
Senior Design Server/Client 
Development for Project 
Matching (Phase 2)
Team 18
Client & Advisor: Akhilesh Tyagi



Team Introductions

Haylee Lawrence
Software Engineering

UI Designer & Lead 
Presenter

MyTien Kien
Software Engineering

Team Organization & 
Client Interaction

Sanjana Amatya
Software Engineering

Individual Component 
Design & Report 

Manager

Alec Elsbernd
Software Engineering

Lead Researcher & 
Floating Help



Introduction

Currently… 
● Matching process time consuming 
● Can lead to client/student dissatisfaction

Main Use Cases
● Clients: Submit Project Proposals
● Students: Input Project Preferences
● Instructors: Create optimal Project 

Groups

Senior Design Project Matching Phase 2



Introduction
What?

● A system that captures the senior 
design cycle from beginning to end

● Main focus on the project matching 
system

● Easier experience for everyone 
involved in the process

What’s so unique?
● Project matching is an example of a 

classical assignment problem
● Using Project Matching algorithm
● Overhauled frontend



Implementation Architecture
Frontend
- Figma Wireframe 
- Layered approach with React 
components 
- React Router capabilities 

Backend
- Laravel application 
- Contains different packages 
- Used axios to call HTTP requests

Database
- Various tables for 

Users 
Projects + preferences 
Groups 



Work Accomplishments 
We have accomplished a lot since the beginning of the 
new semester. In the past few weeks we have 

● Created a fully functional Visual Frontend 
● Created and deploying the backend 
● Set-up Database 
● Frontend communicating with the Database
● Researched, Modified, and Coded a Project 

Matching Algorithm



Instructor Frontend 

Instructor Logs In Dashboard View



Instructor Frontend

Dashboard

Project Matching Results

Project Matching



Algorithm - Paper Version
Abraham et al’s matching algorithm aims to match projects by using worker 
preferences and and requirements.

1. Each worker is given a score based on their preferences for different types 
of projects, and each project is given a score based on its requirements for 
different types of workers.

2. Abraham’s algorithm uses a variant of the Gale Shapley algorithm (stable 
marriage algorithm) to try to match workers to projects by assigning 
workers to projects that score highly for each other.

3. It does this by using a mathematical formula to calculate the optimal 
match between workers and projects based on their scores.

a. The formula takes into account preferences of worker
b. Requirements of projects
c. Quality of the match 

4. The algorithm is iterative and keeps running to improve the quality of 
matches over time.SPA Pseudocode



Algorithm - Our Version
What is Different?

● Matches Students based on Groupmates instead of Lecturers
● Extra Complexity – Checks Groupmates Preferences before 

Grouping with other Students
● Checks if Projects are Valid - allow a Students Major

Implementation
● Coded in Java using Student, Project, and Preferences Classes
● Right now takes Manually inputted Students, Projects, and 

Preferences
● Outputs the Project Matchings
● For Simplicity

○ 3 Project Preferences and 3 Groupmate Preferences
○ Aim to match 1 pair of Groupmates per Project

Our Project Matching Pseudocode



Abraham et al’s algorithm (in depth)
The objective function is the overall quality of matches, and the constraints ensure that each worker is 
assigned to only one project and each project is assigned to only one worker. 

1. The quality of a match is calculated using the dot product of the worker's preference vector and the 
project's requirement vector. 

2. The preference vector represents the worker's preferences for different types of projects, and the 
requirement vector represents the project's requirements for different types of workers. 

The algorithm uses a probabilistic approach to achieve this goal with the following steps:

1. Initialization: For each project and worker, assign a value of 0.
2. Assignment: For each project, choose a random permutation of the available workers, and assign the 

first available worker to the project. Continue in this way until all projects are assigned.
3. Improvement: For each worker, calculate the expected value of the project they are assigned to, based 

on the preferences of the worker and the requirements of the project. If the expected value is higher 
than the current value of the worker, then reassign the worker to a better project.

4. Steps 2 and 3 are repeated until no further improvements can be made.



Abraham et al’s formula
The formula used to calculate the expected value of a worker's assignment is: 

E[V(w,p)] = sum_i (p_i * max(0, w_j - r_ij))

● w is the preference vector of the worker
● p is the probability vector of the project (i.e., the probability of assigning the worker to each project in the current 

assignment)
● r is the requirement matrix of the projects (i.e., the number of workers required for each project and skill 

combination)
● i is an index over the projects, j is an index over the skills

This formula calculates the expected value of the worker's assignment as the sum of the product of the probability of 
being assigned to each project and the maximum of 0 and the difference between the worker's preference for the skill 
and the project's requirement for the skill.

Works Cited: On the Power of Randomization in Algorithmic Mechanism Design. 
https://viterbi-web.usc.edu/~shaddin/papers/randompower-current.pdf. 



Key Contributions
● Haylee

○ Designed, Coded, and Tested Frontend
○ Researched, Coded, and Tested Project Matching 

Algorithm
● MyTien

○ Connected the backend, frontend, database
○ Backend routing and API

● Sanjana
○ Worked to connect frontend and backend
○ Backend controllers 
○ Project Matching Algorithm research

● Alec
○ Previous team backend research
○ Various backend contributions
○ Algorithm research



Challenges and Solutions
● Learning curve with Laravel

○ Lots of documentation and 
research

○ Help from our IT Admin
● Connecting Laravel with other 

components
○ Algorithm and frontend
○ Tutorials, teamwork

● Algorithm and heuristics
○ Research papers
○ Guiding from our advisor
○ Not too familiar with algorithms

● Time and knowledge constraints



Future Work
● Add and allow ABET evaluators access to the website 
● Adding more connections from the backend to the 

frontend 
● Implementing a way for Board members and 

Instructors to sign up for future time slots 
● Future implementations of the algorithm

○ Customization for number of groupmates in a project, 
project skill-level requirements, etc.

○ More bidding iterations to maximize client/student 
satisfaction

○ Satisfaction % customization (sacrifice student 
satisfaction to meet skill-level requirements)

○ Dealing with non-ideal conditions (more projects 
than students)



Conclusion


