
Senior Design Server/Client Development
for Project Matching [Phase 2]

Final Design Document

SD ‘23 - Team #18
Clients: Jacob Grundmeier, Akhilesh Tyagi

Advisor: Akhilesh Tyagi

Haylee Lawrence Lead Presenter, Minute Keeper, Testing, Document Editor
MyTien Kien Team Organization, Client Interaction
Sanjana Amatya Individual Component Design, Report Manager, Assignment Tracker
Alec Elsbernd Lead Researcher, Floating Help

Team Email: sdmay23-18@iastate.edu
Team Website: https://sdmay23-18.sd.ece.iastate.edu/

https://sdmay23-18.sd.ece.iastate.edu/

1

Executive Summary

Development Standards & Practices Used
Since most of our product is software-based, we used the most common software practices
used in the industry. This included coding in an efficient and reusable manner to save time and
resources. This was followed by code reviews from everyone in the group to ensure our code
was up-to-date and efficient. Lastly, documentation and/or commenting code helped everyone
tremendously regarding past and future work.

Applicable Courses from Iowa State University Curriculum
Below is a brief list of courses taken at Iowa State University that have helped our team develop
our project.

● COM S 228: Introduction to Data Structures
● COM S 309: Software Development Practices
● COM S 311: Introduction to Design and Analysis of Algorithms
● COM S 319: Construction of User Interfaces
● COM S 327: Advanced Programming Techniques
● COM S 363: Introduction to Database Management Systems
● COM S 409: Software Requirements Engineering

New Skills and Knowledge
There have been several learning curves throughout this project, including gaining knowledge
about something we have not taken a course for. We have also continuously learned new things
about the other tools we used to help build our product. Below is a list of what we have been
learning how to use.

● Figma: A collaborative web application for interface design
● Material UI: A Library of React.js components allowing for a seamless and consistent

design. The components also help increase our functionality, such as allowing editable
data tables.

● Lavarel: A backend framework that provides all of the features needed to build modern
web applications, such as routing, validation, caching, queues, file storage, and more

● Project Matching Algorithm: An algorithm from a paper cited in Section 4.1. Our
modified version matches students to projects based on Project Preferences and
Groupmate Preferences. Algorithm Outputs listed in Implementation.

2

Table of Contents

List of Figures and Tables.. 4
1 Team...5

1.1 TEAM MEMBERS..5
1.2 REQUIRED SKILL SETS FOR YOUR PROJECT...5
1.3 SKILL SETS COVERED BY THE TEAM...5
1.4 PROJECT MANAGEMENT STYLE...6
1.5 INITIAL PROJECT MANAGEMENT ROLES...6

2 Introduction...6
2.1 PROBLEM STATEMENT... 6
2.3 INTENDED USERS AND USES..7
2.4 REQUIREMENTS & CONSTRAINTS..8

2.4.1 Engineering Standards... 8
2.4.2 Engineering Constraints..9
2.4.3 Functional Requirements..9
2.4.4 Non-Functional Requirements.. 10
2.4.5 User Interface and Experience Requirements..10

2.5 DESIGN EVOLUTION..11
3 Testing... 12

3.1 TESTING PROCESS...12
3.2 TESTING RESULTS..12

3.2.2 USABILITY TESTING...12
3.3 FUTURE TESTING PLAN... 13

4 Implementation Details.. 14
4.1 PROJECT MATCHING ALGORITHM..14

4.1.2 Pseudocode.. 15
4.2 Discussion of Algorithm Source Material... 18

5 Security Concerns and Countermeasures...20
5.1 PHYSICAL SECURITY..20
5.2 CYBER SECURITY... 20

5.2.1 Following Best Coding Practices.. 20
5.2.2 Testing Against Common Attacks... 21

6 Related Works Context.. 21
6.1 RELATED PROJECTS.. 21
6.2 RELATED LITERATURE... 22

APPENDICES... 22
Appendix I: Operation Manual... 22
Appendix II: Alternative Initial Versions of the Design... 27
Appendix III: Other Considerations..28

3

Appendix IV: Code... 28
Appendix V: Usability Testing Documentation... 29

Form:..29
Responses:..32

4

List of Figures and Tables
TABLE 1: Table of Intended Users and Uses Page 7
TABLE 2: Table of User Interface and Experience Requirements Page 11
TABLE 3: Table of Future Testing Plan Page 13

Figures 1&2: Example Students and Preferences #1 Page 16
Figure 3: Example Projects #1 Page 16
Figure 4: Example Project Matching Results #1 Page 17
Figures 5 & 6: Example Students and Preferences #2 Page 17
Figure 7: Example Projects #2 Page 18
Figure 8: Example Project Matching Results #2 Page 18
Figure 9: Formulas Used in the Abraham et al Algorithm Page 19
Figure 10: Public Folder Page 22
Figure 11: Backend Controllers Folder Page 23
Figure 12: Backend Models Folder Page 23
Figure 13: Database Migrations Page 24
Figure 14: Backend Blade Files Page 24
Figure 15: Frontend Folder Hierarchy Page 25
Figure 16: Algorithm Folder Page 25
Figure 17: Laravel Possible Error Page 26
Figure 18: Laravel URL and APP_URL Page 27

5

1 Team

1.1 TEAM MEMBERS
Haylee Lawrence (Software Engineering)
MyTien Kien (Software Engineering)
Sanjana Amatya (Software Engineering)
Alec Elsbernd (Software Engineering)

1.2 REQUIRED SKILL SETS FOR YOUR PROJECT
Frontend Development (React.js)
Backend Development (Laravel, Routing, API)
Database Development (MySQL)
CICD knowledge
Project management skills
Client interaction skills
Teamwork and communication skills
Agile experience

1.3 SKILL SETS COVERED BY THE TEAM
Frontend Development

○ Haylee Lawrence, Alec Elsbernd, Sanjana Amatya
Backend Development

○ MyTien (Routing, API)
Database Development

○ Haylee Lawrence, MyTien Kien, Alec Elsbernd, Sanjana Amatya
CI/CD Knowledge

○ Haylee Lawrence, Sanjana Amatya
Project Management Skills

○ Haylee Lawrence, MyTien Kien, Alec Elsbernd, Sanjana Amatya
Client Interaction Skills

○ Haylee Lawrence, MyTien Kien
Teamwork Skills

○ Haylee Lawrence, MyTien Kien, Alec Elsbernd, Sanjana Amatya
Agile Experience

○ Haylee Lawrence, MyTien Kien, Alec Elsbernd, Sanjana Amatya

6

1.4 PROJECT MANAGEMENT STYLE
Our group planned on adopting an Agile project management style because it was more
applicable to our needs, with

● Short-term deadlines
● The ability to incorporate changes at any time into the project
● Take stakeholders' feedback into account throughout the project
● Potential to overlap work between teammates

Each individual on our team has more experience working in an Agile environment and is more
comfortable using it. Using Agile, we worked on different aspects of the project simultaneously
and combined them at the end of each sprint. The end of the sprint included a meeting
discussing the parts we have been working on and what we like and don’t like so far, including
what we could improve on before we continue onto the next sprint. We also considered the
stakeholders' feedback as the project continues; this is best possible in an agile environment.

1.5 INITIAL PROJECT MANAGEMENT ROLES
Haylee Lawrence (Lead Presenter, Minute Keeper, Testing, Document Editor)
MyTien Kien (Team Organization, Client Interaction)
Sanjana Amatya (Individual Component Design, Report Manager, Assignment Tracker)
Alec Elsbernd (Lead Researcher, Floating Help)

2 Introduction

2.1 PROBLEM STATEMENT
Our project aims to capture the Senior Design project Lifecycle. Our main focus was to
streamline the Senior Design process for all users involved, specifically improving the project
management system.

Questions We Considered:
1. How might we allow for group selection for professors/TAs/admins so that they need to

do as little work as possible along with retrieving maximal results?
2. How might we allow for easy preferences input for Senior Design students so they can

quickly and easily get the right project for them?
3. How might we allow Clients to easily submit project proposals?
4. How might we allow Senior Design instructors to easily evaluate project submissions?
5. How might we streamline Faculty/Industry panel signups?

7

This project exists because there is room to automate the Senior Design project system. We
want everyone included in this process to be satisfied with the result. Although several students
are satisfied with their current project and team, there's always room for improvement. Students
and clients are most affected by the problem statements above. However, Instructors, Faculty
Advisors, and Faculty and Industry Board members are also stakeholders to consider.

This problem only occurs within the Senior Design classroom/course. We aim to solve this
problem as we want students to enjoy what they're doing throughout the project and have them
end their college careers by creating a working project that they can present to the faculty. Our
solution will be to create a web-hosted system that future Senior Design students can use to
accurately assign projects based on their preferences.

2.3 INTENDED USERS AND USES
There will be several users using our product. These include but are not limited to: students,
clients, Senior Design professors, Faculty advisors, and Faculty and Industry Board members.
Below is a quick description of how a user may interact with the product and who they are.

TABLE 1

User Key Characteristics Needs Benefit and Uses

Students A student using this product will be
a senior in electrical, software,
computer, or cybersecurity
engineering. This student would
be taking the senior design
course. Their goals would likely
include ending their senior year
with a great project and
graduating. Depending on their
preferences, the student would
like a great group to work with and
a project they are at least
interested in.

The student needs a way to
state project/group/working
preferences because this is
how the system would match
students to specific projects.

Students will fill out their
preference forms. Based on
their answers, our product
will help to accurately pick
out the best project based on
their needs and others. The
goal is for the group
assignments to be just as
effective, if not more
effective, than group
assignments done by hand.

Clients A client using this product will be
either from the industry or a faculty
member. Their goal would be to
find student help with a specific
project. They would also be willing
to help and teach the students
over the year.

The client would need to fill
out the senior design project
proposal form because the
students would need to know
what the project is about and
what is needed out of the
project.

The system would result in a
group of students interested
in the client's project, giving
the client a team to work with
to help get their project idea
up and running.

SD
Instructors

These Senior Design Instructors
are faculty members here at Iowa
State. Their role in this course is to
teach students skills that may aid

Senior design instructors need
access to all submitted
projects because they will
need to go through them and

As the current process
stands, the senior design
instructors are the ones that
are doing the manual work of

8

them in their senior design project.
They are also responsible for the
day-to-day grades in the class.

approve the viable projects.

Senior design instructors will
need a way to submit student
lists to the database and
ensure that it matches the
roster because they will need
to ensure that all Senior
Design students receive a
project and are correctly
matched to their preferred
groups/project.

assigning projects. They will
benefit greatly from this
project because it will
significantly reduce the time
and effort they must put into
determining and distributing
project assignments. This
product will also create an
easy-to-access collection of
all project submissions to
more easily determine which
projects will be viable.

Advisors Faculty advisors are ISU faculty
members assigned to advise and
supervise one or more senior
design teams. They will be
knowledgeable about the project
that the student teams are working
on and will be able to provide
ample guidance to students
throughout the year.

The Faculty Advisors need a
way to access their assigned
senior design groups because
they will need to determine
which group(s) have been
assigned to their project(s).

The faculty advisors will
benefit from this product
because they will be
assigned groups interested
in their project. This tool will
allow easier access to their
project groups' contact info.

Review
Members

Faculty and Industry Review
Board members will be ISU
Faculty or Industry Members who
volunteer to sit on a Review Board
to evaluate Senior Design
Projects. The Faculty Review
Board will evaluate projects at the
end of SD 491, and the Industry
Board will evaluate projects at the
end of SD 491. Both parties have
significant knowledge of various
industries and the Project
Lifecycle.

The Faculty and Industry
Review Members need a way
to sign up for timeslots, during
which they will evaluate
projects. They also need a
way to access information
regarding the teams they are
evaluating (e.g., team
number(s), access to the team
website, and design
document(s)).

The Review Board Members
will benefit from this product
because it will consolidate
the time signup and team
information into one place.

2.4 REQUIREMENTS & CONSTRAINTS

2.4.1 Engineering Standards
The following are Engineering Standards that apply to our project.

● IEEE/ISO/IEC 26531-2015
○ This standard provides the requirements for managing content used in the

software development lifecycle. We consulted this standard to ensure we
manage all content throughout the product lifecycle and the user and service
management documentation process.

○ https://standards.ieee.org/ieee/26531/5753/

https://standards.ieee.org/ieee/26531/5753/

9

● IEEE P2887
○ IEEE P2887 is not a standard but a recommended practice that guides

Developers on how to a Zero Trust Security (ZTS) architecture. A ZTS
architecture helps us ensure our project's confidentiality, integrity, and availability
of the data within it.

○ ZTS is an effective way to ensure comprehensive security for a project by
asserting that no user, network, or application should be trusted by default.

○ https://standards.ieee.org/ieee/2887/10278/
● ISO/IEC/IEEE 16085:2021

○ This standard outlines risk management processes for projects to reduce/mitigate
risks and better handle risks as they occur.

○ https://www.iso.org/standard/74371.html
● WCAG Version 2.1 and ADA Regulations

○ These standards and regulations will guide Developers on how to make a
product that is accessible to all users.

2.4.2 Engineering Constraints
1. Time: The main constraint for this project was time. We were given limited time as we

had only two semesters to fully plan and develop this project. If given more time, we
would likely include more features and make a more well-rounded algorithm and more
backend connections.

2. Technology Used & Tools: Since our project is started in phase 2, we needed to build our
project off of last semester's work to maximize efficiency. For whichever portions we
reused, we needed to emulate their technology as well as possible for an easy transition.
Similarly, we were limited by which technologies we were familiar with. Thus, we needed
to sacrifice reusability to maximize coding efficiency.

3. Cost:We were not given any money to help build our site, so we were constrained to
using only free resources. Tools and frameworks such as our coding languages, and
database all had to be free. We also needed to be mindful of the cost of IT managers
maintaining the site. To limit the money the University needs to pay them to maintain our
site, we made our project fault-tolerant, easy to use, and as safe as possible. If given a
budget, we would have loved to experiment with hosting our project and database using
Cloud tools such as AWS.

2.4.3 Functional Requirements
1. Web-Based Application: This project requires a front-end interface for students, clients,

and faculty members to interact with. The front end will be where students set their
preferences for groups. After team formation, this interface will also be how users can
see the groups and project information.

https://standards.ieee.org/ieee/2887/10278/
https://www.iso.org/standard/74371.html

10

2. Database: Our product needed a backend database to store the data received from the
users. The database is essential in ensuring that users can choose their preferred group
while also reaching ABET standards for diversity and inclusion.

3. Team Formation: One major aspect of our application will be how it can form teams. It
considers the students' preferences on which project they want to work on and who they
want to work with. It also considers group constraints such as the maximum number of
students on a project and the maximum number of preferred groupmates on a project.

2.4.4 Non-Functional Requirements
1. Usability and Humanity: This product will be usable by Students, Clients, Senior design

instructors, Faculty advisors, and Faculty and Industry Board members and can be used
on the first attempt with basic knowledge about websites and how the Senior Design
class operates. Our product creates a server/client system for the senior design course
to organize and accurately assign projects to teams and clients based on preferences.

2. Performance: The product collects data from the seniors in 491 using a preferences form
that will assist students in choosing and differentiating what they would like to do in
terms of their project or what they're looking for overall. The product uses a Project
Matching algorithm (detailed in the Problem Matching Algorithm Section) to compare a
student's preferences in each database column and assign projects.

3. Security: The product's data and functionality can only be accessed by authorized users
and employees of Iowa State University. The system should protect data in the product's
database from corruption and unauthorized/ accidental disclosure. Data that has been
printed as a hard copy should be properly disposed of. The product will also retain all
records of data processed out of the system to ensure the safety of its users.

4. Cultural and Political: The product uses English as its default language. It will not use
any offensive wording, icons, or pictures that could displease users.

2.4.5 User Interface and Experience Requirements
We want the users to have an easy yet quick experience when choosing their preferences or
submitting project proposals. Students input their information in a way that both sides (students
and clients) can easily understand. The preferences form allows users to easily choose and
differentiate what they would like to do regarding their project or what they're looking for overall.
Everything is accessible on both the web and mobile devices. Below is a brief list of what every
user may need regarding user interface and experience requirements.

11

TABLE 2

User Requirements/Needs

Student Picking project preferences, access to
GitLab, website

Client Project proposals

Senior Design Instructors Grading system, access to GitLab, approving
projects website, running project matching

Faculty Advisors Grading system, access to GitLab, website,
assigned to project proposals

Faculty & Industry Review Board Members Signing up for review times, viewing team
information and websites

2.5 DESIGN EVOLUTION
At the beginning of the semester, we were equipped with a solid Design Plan. We had a site
Wireframe in Figma, a solid understanding of React.js, a minimal understanding of Laravel, and
a general idea that we wanted an Auctions Algorithm.

To start the semester strong, we planned on completing as much as possible at least three
weeks before our presentation data. Everything was detailed in a shared scheduling Excel
where we documented all the tasks we needed to complete and when we would complete them.
By the end of the first few weeks of the semester, we had completed 22 screens for the frontend
in React.js and had started working on designing an algorithm. Our algorithm design process
involved researching the specific heuristics we could use to maximize student satisfaction with
groups and projects.

The backend team worked on creating and deploying the Laravel backend server and setting up
Laravel locally with the assistance of one of the group's advisors. This process took an
extended amount of time due to technical challenges that needed to be solved and remained a
difficulty that our team had to deal with for the rest of the semester. Close to halfway into the
semester, we realized that one of the errors that was preventing all of our progress was solved
by removing all React Native dependencies from the frontend code, which was a tedious
process. Doing so, however, allowed us to display the frontend on the Laravel site. The next
challenge involved figuring out how to connect both frontend and backend pages on the
application, and it was not completed until the end of the semester.

By mid-semester, we were also running into the issue that we had not successfully designed an
algorithm yet. The difficulty lay in the complex nature of the algorithms we were designing,
which made it difficult to approach coding them. Later in the semester, we found an article with
an algorithm that fit our criteria for a project-matching algorithm. We coded our algorithm based

12

on the pseudocode, adjusting it so that the matching considered groupmates instead of
lecturers. Meanwhile, the backend team had finished up backend controllers and was working
on getting dummy data from our database to show up on the frontend react pages.

Overall, by the end of the semester, we ended up with a fully fleshed-out Fronted hosted on a
Laravel server, few database-frontend connections, and a Project matching algorithm coded
separately from our project. Due to the disparity in frontend vs. backend knowledge, our
frontend team consistently got more work done faster, leading to some issues. This also caused
the main interoperability issue between our site and the algorithm. The frontend team finished
work far before the backend team, so they started developing the algorithm in Java. By the time
the backend connections had been made and the algorithm was completed, we ran into the
issue that Java and Laravel do not work well together, and we would have needed to convert
the Java code into JSX code in one week. Our website is not fully functional, but it’s a solid
demonstration of how the project-matching site will look and behave. Future iterations of the
project will have an easier time visualizing the Project Matching process and can improve upon
our algorithm.

3 Testing

3.1 TESTING PROCESS
As described below, many tests can be carried out to ensure our system works as specified. We
have spent some time performing user-testing our webiste but could not test as in-depth as we
would have liked. With more time and a working frontend-backend connection, we would have
liked to have done more rigorous and comprehensive testing.

3.2 TESTING RESULTS

3.2.2 USABILITY TESTING
Our group performed Usability Testing for our website using a Google form. We asked our
testers to perform 4 tasks and recorded if they could complete the task, how long it took them to
complete the task, and any comments they had. Overall, we had 6 responses, which gave us a
lot of constructive feedback that we can use to improve our Website.

The Questions and the Responses are recorded in Appendix V.

The following are the big takeaways from our testing:
● Student preference forms were confusing to users - they should be more simplistic
● The site was all too similar looking, which made it hard to navigate
● The Project Matching page was either was non-responsive or quick but confusing
● Some found Approving/Declining projects to be tedious
● There is no way to create a new Proposal as a Client

13

There were many other useful points made by our testers that will make our site more usable in
the future. Unfortunately, we ran out of time to be able to meaningfully implement the feedback
we received, but we believe that this information will be useful for future iterations of the project
to improve upon the site.

3.3 FUTURE TESTING PLAN
Had we had more time, we would have liked to perform more comprehensive testing on all four
main components of our site: the frontend, the backend, the database, and the project's
algorithm. Below is a general summary of future testing work that must be done in the future.
Each summary will have a set list of requirements each component shall pass to guarantee a
well-tested web application.

TABLE 3

Components Summary

Frontend The user can navigate to any page on the
web application based on the role and
privileges they are given. For the frontend
components, we will conduct unit and
integration tests that go through all
performance requirements from a user’s
perspective and ensure user inputs and all UI
functionality are set up perfectly. We also
want to ensure our software matches the
business and client's goals.

Backend This component will focus more on the
product's functionality and how well the
features work with new code changes
throughout the semester. An example is
connecting to the database between the
frontend and backend components and going
through different user scenarios to ensure the
data is transferred properly and securely
when requested.

Database All data in the database will be returned
correctly to ensure the connection between
all components works properly. Data return
for queries should not take more than one
second, and all data deleted or inserted
should be put in their proper table.

14

Algorithm Our team will test the Project Matching
algorithm by taking in input, calculating the
expected output, and comparing it to the
output the algorithm gives us. Our main goal
is to check if it's time efficient and not faulty.
This means we need to ensure that it can
take in bulk amounts of data without crashing
the product.

Examples of what guidelines we will be following to write functional and quality tests:
1. Simple and transparent tests
2. Creating user test cases with the end product and client in mind
3. Avoiding repetitive test cases
4. Test cases will include a description of what is being tested, an explanation of how it will

be tested, and the expected results.

4 Implementation Details
Our project is Phase 2 of the Senior Design Server/Client Development for Project Matching. As
there were a lot of similarities between the goals and requirements the 1st and 2nd iterations
were trying to achieve, our team decided to build off of the code they wrote for the web
application and improve on the aspects they were lacking. Team 3 used Laravel and Vue.js,
while Team 44 used a Laravel Backend, an Angular frontend, and Angular components and
services. We think they did a good job with their database components but lacked an in-depth
algorithm, which we have decided we want to focus on the most. We also wanted to improve on
their basic Frontend.

To remain consistent and allow for reusability, we have decided to use Laravel for the backend,
and because we were familiar with it, we chose to make a React.js frontend. We chose
consistent and familiar coding languages because we wanted to be able to focus on the
algorithm aspect of the project. As of May 2023, We have completed a simple algorithm that
matches students to projects based on their Project and Groupmate preferences. Due to issues
detailed in the Design Evolution section, the website we created is not fully functional but is up
on our site (linked in Appendix IV) to show what views would look like based on the user's role.

4.1 PROJECT MATCHING ALGORITHM
The Algorithm coded for this project is a modified version of the SPAStudent Matching Algorithm
proposed in “Two algorithms for the Student-Project Allocation problem” by Abraham et al. (cited
below). This algorithm focuses on assigning students to projects and lecturers based on student
project and lecturer preferences. This SPA algorithm is an example of a two-sided matching
problem where a set of participants can be partitioned into two disjoint sets, A and B.

15

Our modified version takes the SPA algorithm and replaces Lecturers with preferred
Groupmates. Each student has 3 Project Preferences and 3 Groupmate Preferences and is
allocated to a project according to all 6 preferences. The algorithm also considers the maximum
number of students in a project, if students have the right major to be in a project if their
groupmate preference does not prefer to be in a group with them, and more. Detailed
Pseudocode is listed below and the GitLab with the Algorithm is linked in Section 7.4.

All code was written and tested in Java.

4.1.2 Pseudocode
for si in all students

Project pj = si’s highest bid project preference
Student lk = si’s highest bid groupmate preference

if si has no project preference and has a groupmate preference
pj = a valid* project for si and lk

if si already has a project pi
if lk has a project pk

sum = si’s bid for pk
sum += si’s bid for pi
if sum > si’s bid for pj

pj = pi
assign si to pj

while pj is not a valid* project for lk
else choose lk = si’s next highest groupmate bid

while lk has a project pk
total = lk’s bid for si
total += lk’s bid for pj
if total < si’s bid for lk

assign lk to pj
else choose lk = si’s next highest groupmate bid

while pj has too many students
sr = student with the lowest bid for pj
remove sr from pj

for si in all students with no project
if si has a highest bid project pb and it is valid*

pj = pb
else if si has a highest bid groupmate lk who has a valid* project
pk

pj = pk
else

pj = the first open project that is valid*

*valid projects are ones where the student is in one of the required majors for that project

16

Matching Results

The following are the output from two separate Project matchings.
(1) Students + Preferences:

Figures 1 & 2: Example Students and Preferences #1
(1) Projects

Figures 3: Example Projects #1

17

(1) Results

Figures 4: Example Project Matching Results #1

(2) Students + Preferences

Figures 5 & 6: Example Students and Preferences #2

18

(2) Projects

Figures 7: Example Projects #2
(2) Results

Figures 8: Example Project Matching Results #2
Works Cited

Abraham, D. J., Irving, R. W., & Manlove, D. F. (2007). Two algorithms for the Student-Project
Allocation problem. Journal of Discrete Algorithms, 5(1), 73-90.
https://doi.org/10.1016/j.jda.2006.03.006

4.2 Discussion of Algorithm Source Material
Abraham et al’s matching algorithm aims to match projects using worker preferences and
requirements.

Each worker is given a score based on their preferences for different types of projects, and each

https://doi.org/10.1016/j.jda.2006.03.006

19

project is given a score based on its requirements for different types of workers. Abraham’s
algorithm uses a variant of the Gale Shapley algorithm which tries to match workers to projects
by assigning them to projects they score high for. The Gale Shapley algorithm and the Stable
Matching algorithm both use table matching between two sets of participants, where each
participant has preferences over the members of the other set. The score is produced by using
a mathematical formula to calculate the optimal match between workers and projects based on
their scores. The formulas in Figure 1 consider workers' preferences, the requirements of
projects, and the quality of the match to ensure the matching is stable (undersubscribed or
over).

Figure 9: Formulas Used in the Abraham et al Algorithm

The algorithm uses linear programming to optimize a linear objective function subject to linear
constraints. In this case, the objective function is the overall quality of matches, and the
constraints ensure that each worker is assigned to only one project and each project is assigned
to only one worker. The quality of a match is calculated using the dot product of the worker's
preference vector and the project's requirement vector. The preference vector represents the
worker's preferences for different projects, and the requirement vector represents the Project’s
requirements for different types of workers.

20

The algorithm uses constraints to ensure that each worker is assigned to only one project and
each project is assigned to only one worker. These constraints are linear equations that specify
that the sum of the assignments for each worker or project must equal 1. The algorithm also
uses additional constraints to ensure that the number of workers assigned to each project meets
its staffing requirements and that the number of projects assigned to each worker does not
exceed their capacity. These constraints are linear inequalities that specify that the sum of the
assignments for each worker or project must be greater than or equal to a minimum value and
less than or equal to a maximum value.

The resulting linear programming problem is solved using standard optimization techniques,
such as the simplex method or interior point methods, to find the optimal work assignment to
projects that maximize the overall quality of matches subject to the constraints. The algorithm is
iterative and therefore keeps running to improve the quality of matches over time.

5 Security Concerns and Countermeasures

5.1 PHYSICAL SECURITY
Physical Security related to our project would involve the physical security of the Servers
running our site. Another security concern would be related to the physical security of the
computers/laptops of the admin with access to our Server VM/Database. The physical security
of the servers falls outside the scope of this Design Document since our group cannot control
Campus Security. Physical security regarding the computers/laptops of either IT, Admin, or our
Group is highly important and something our team can control. ISU employees must be careful
with their work computers and thus ensure no one gains access to their devices. Our group
members are also incredibly careful with our devices and have our Database password
protected so a user that gains access to our physical computers cannot access the Database.

5.2 CYBER SECURITY
The Project Matching site deals with many users and their data. Thus we have taken measures
to ensure that our site is as secure as possible for our Users.

5.2.1 Following Best Coding Practices
When creating our site, every group member has followed the best coding practices. When
coding the frontend, we ensured that every user would only have access to the information they
needed to see. For example, there was no page listing all Senior Design students in the Client
views. We also minimized Extraneous Functionality by only coding the pages users needed to
have and ensuring that we only collected necessary data. Lastly, we utilized a strict and secure

21

Login Function using Laravels routing capabilities. Taking these steps has ensured that we limit
vulnerabilities from the outset.

5.2.2 Testing Against Common Attacks
The deliverable we currently have does not have connections from the frontend to the backend
and is mostly static (not allowing changes in the frontend dynamically), which prevents most of
the Vulnerabilities listed below (SQL Injection, Cross-site Scripting, Brute Forcing). We also do
not have routing based on user type completed, so URL Manipulation is possible. Future project
iterations should test for the following common vulnerabilities once frontend-backend
functionality is completed.

Vulnerability Test Solution

SQL Injection Injecting SQL statements such as
hacker' AND password = 'whatever'
OR '1'='1'
Into all of the forms that access the
Database (e.g., Login Form) to see if
we can

(a) Login without a password
(b) View/edit/delete data

Sanitize inputs and use the Principle
of Least Privilege.

Cross-Site
Scripting

Inputting malicious HTML into inputs
Ex. “onmouseover= alert(‘hello’);”

Sanitize and validate inputs.

Brute Forcing Attempting to Login multiple times
with common passwords.

Allow three incorrect login attempts
before locking the account for five
min. After nine consecutive incorrect
Login attempts, IT must be contacted.
Requiring Users to have complex
passwords.

URL
Manipulation

Attempting to access secure pages
for different Users/User types by
manually inputting the URL (ex.
www.[site].com/User01Info)

Perform user permission checks
before displaying a page.

6 Related Works Context

6.1 RELATED PROJECTS
While there are lots of educational system-related web applications that can be compared to our
web application, there are none that we have found that perform automated Project Matching
like ours. For example, in Canvas or Google Classroom offer project or classroom management
capabilities such as our project, but as far as we have found, do not offer automated project
matching based on preferences.

22

Other related project matching projects include the CapSource Project Matching Capstone
Project (source), and the 2 teams for Phase 1 of this project. While the Phase 1 teams also
considered the Senor Design lifecycle, CapSource’s project and other projects we’ve seen do
not aim to create a Project Management site as ours does.

6.2 RELATED LITERATURE
The concept of Project-Matching algorithms is not new. While the concept of using an Auctions
Algorithm for Project Matching, doing a basic search for project matching algorithms returns a
number of projects and papers.

For our group, the main literature reference for our Algorithm came from the“Two algorithms for
the student-project allocation problem” written by Abraham, D.J., Irving, R.W. and Manlove, D.F.
We used this piece as an inspiration for our algorithm. The algorithm we created and
implemented in this project had similar requirements to the algorithms in this paper and ended
up having a lot of influence from those algorithms.

APPENDICES

Appendix I: Operation Manual
1. Brief descriptions of the folders for Backend, Frontend, Algorithm:

Backend
The Backend has five important types of files that run in the Laravel Server and make
sure the application is running smoothly.

1. .JSX files: The first type of file are the .jsx files located in the js folder under the
public folder of the repository.

Figure 10: Public Folder

https://capsource.io/projects/project-matching-algorithm/

23

2. Controller files: The Controller files are under the Controllers folder in the app
folder.

Figure 11: Backend Controllers Folder

3. Model files: These files are located in the Models folder right under the
Controllers folder (in the app folder)

Figure 12: Backend Models Folder

24

4. Migration files: The Migration files can be found in the database folder under the
app folder.

Figure 13: Database Migrations

5. Blade.php files: These files are located in the views folder under the resources
folder in the repository.

Figure 14: Backend Blade Files

How these files are connected:
The migration and model files are responsible for facilitating communication with the
database. The migration files define the structure of the database tables, and the model
files are an interface to manipulate the data in those tables. The Controller files have the
logic determining how users interact with the website and the displayed data. They
handle user requests and control how the application functions. These files call the

25

blade.php files that provide the structure and layout of the website and then call on the
.jsx files that generate the visual elements of the website’s interface.

Frontend
The frontend has five main folders that hold the code for the frontend of our website

1. The Board member folder
2. The Client folder
3. The Faculty Advisor folder
4. The Instructor folder
5. The Student folder

Figure 15: Frontend Folder Hierarchy

These folders contain important files like the Student Dashboard and Project
Preference pages and are located under user pages folder within the src folder

Algorithm
The Algorithm is in the sdmay23-18 folder that also contains the
sdmay23-18-backend folder that holds our backend code

Figure 16: Algorithm Folder

26

1. The Bid.java, Student.java, Project.java files, etc. are all used to create
student, project, and preferences objects to facilitate testing

2. The Algorithm.java file is the main driver code with printing functionality
3. The Algorithm_2.java contains our modified Algorithm code

2. Engineering Setup: Laravel Setup and Potential Errors
1. Download the repository from Gitlab
2. In a terminal, cd into the sdmay23-18 backend and run php artisan serve

a. If this error occurs:

Figure 17: Laravel Possible Error

It means that the autoload.php files that are created at install/upgrade composer
do not exist. To install composer run:

- install composer
- upgrade composer

This generates the necessary files to run php artisan serve which will have
the server up and running.

3. Now in an IDE, open up the sdmay23-18 backend folder and run the command npm run
dev

4. This will generate the localhost URL and APP_URL like the image below:

27

Figure 18: Laravel URL and APP_URL

If there is no APP_URL, go to the .env file in an IDE and change the code at the top of
the file to match the code below:

APP_NAME=Laravel
APP_ENV=local
APP_KEY=base64:qxsuulZOQfYw7tRgajflWYGDKRusUkrK4+VEp5IvQe8=
APP_DEBUG=true APP_URL=http://sdmay23-18.ece.iastate.edu/

And,
DB_CONNECTION=mysql
DB_HOST=sddb.ece.iastate.edu
DB_PORT=3306
DB_DATABASE=laravel
DB_USERNAME=sdmay23-18
DB_PASSWORD=JwU7brycJL

If there is no .env file, create one in the IDE, in a terminal or in a file explorer, add the
code and save it.

Appendix II: Alternative Initial Versions of the Design
One alternative initial version included many more intended users. Besides our main users –
Students, Clients, Senior Design Instructors, Faculty Advisors, and Board Members – we also
had ABET Evaluators and IT managers. We removed ABET evaluators because they would

http://sdmay23-18.ece.iastate.edu/

28

only need to access the site every few years and would therefore be better suited to being
added in the future. We also decided to remove the IT Managers Frontend use case because
they would not necessarily need access to our site but would instead be working with the server
and database for our website.

Originally, our project would use an Auction Algorithm to facilitate project matching. Students
would have a certain amount of points to bid, and they would bid on their preferred projects and
group mates. At the start of the semester in SE 492, we were working to develop our own
auctions algorithm, but after mid-semester, we realized that it would be infeasible for us to
develop our own working algorithm, code it, and figure out how to insert it into a Laravel
backend with the remaining time. We found a paper with a matching algorithm that was not an
Auction Algorithm, and based on the pseudocode, we coded a working matching algorithm.

Our initial design had us implement previous teams' back ends to save time and be more
efficient. Our initial reviews of their code during SE 491 made us optimistic that we could do so.
After taking a closer look during SE 492, we realized that the other teams did not have enough
of a backend for us to work with, and it would be easier to set up our own Laravel project and try
to pick and choose from their back-end code. In the end, we ended up redoing their backend
from scratch so that it would work with our React frontend. This ended up being a lot more
time-consuming than we were hoping it would be. However, we have set a good foundation for
future project iterations as we got our React frontend to work with our Laravel backend.

Appendix III: Other Considerations
We have learned a lot over the course of this project, mainly that while some backend and
frontend frameworks can technically work together, that doesn't mean that they are easy to
implement. We chose to use a React frontend because we were familiar with it, and we decided
to use a Laravel backend because that was what both previous teams had implemented. After
some research, we found that React apps could be implemented with Laravel. Once starting the
coding process, however, we found it difficult to implement React with Laravel. We would have
been better suited to use Spring Boot instead since it is another framework that we were all
familiar with.

Another thing we learned is the difficulty of holding group members accountable when you do
not see them regularly. While our group communicated regularly over Discord and had weekly
meetings together, holding each other accountable for our work was difficult. Had we had daily
or even bi-weekly in-person meetings to see each other, it would have been easier to hold each
other accountable for weekly work. This lack of accountability led certain members to do less
work than others. As a result, we learned the importance of meeting often to ensure every group
member was pulling their weight.

Appendix IV: Code
All of our code can be accessed through our GitLab linked below:

29

** Please note that the GitLabs may not be Public, and viewers may need to request access

Frontend GitLab: sd / sdmay23-18_frontend · GitLab (iastate.edu)
Our Frontend repository contains the React.js app that houses all of our frontend code.
This also has the original form of our algorithm.

Backend GitLab: sd / s dmay23-18_backend · GitLab (iastate.edu)
Our Backend repository contains our deliverable website code. It houses our Laravel app
combined with our React frontend and Algorithm code.

Our Deliverable website can be found here: http://sdmay23-18.ece.iastate.edu/
1. Ensure you are connected to the ISU network (VPN or On Campus)
2. Open the Link
3. Navigate to the “Log In” button in the top right corner
4. Peruse the Frontend Mockup
5. For a working Frontend/Backend Use Case, please view the Demo Video linked on our

Senior Design Website

Appendix V: Usability Testing Documentation

Form:

https://git.ece.iastate.edu/sd/sdmay23-18
https://git.ece.iastate.edu/sd/sdmay23-18_backend
http://sdmay23-18.ece.iastate.edu/

30

31

32

Responses:

33

34

35

36

